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EXECUTIVE SUMMARY

The mixing of nanoscale particles into an aerospace epoxy resin has been
accomplished. The complete dispersion of particles was considered the most difficult
problem during processing. A combination of mechanical and ultrasonic mixing was found
to produce the best results. Agglomeration of nanoparticles occurred in many of the
formulations, particularly when the particles started out in suspension.

The particle surfaces could be modified with silane coupling agents. These agents
could have either amine or epoxide functionally. Since these same silanes are silica formers,
which by themselves produced similar mechanical property changes in the epoxy resin, it is
not clear whether the surface modification of the particles is a necessary part of the
formulation. When large amounts of the silanes were added, a dramatic decline in the Tg
resulted.

While a range of particle mass fractions was made, the best results were obtained
with only one-percent spherical nanoparticles. The fracture toughness of this formulation
was over twice that of the control resin. Even when the addition of nanoparticles did not
increase the average fracture toughness of the resin, it did decrease the spread in the data.
Generally the addition of spherical nanoparticles and/or silicate formers had little effect on
the flexural strength or stiffness of the resin. Limited layered silicate formulations had no
significant effects on fracture toughness but did double the flexural strength and stiffness of

the resin.



1. COMPOSITE PROPERTY ENHANCEMENT WITH NANOSCALE FILLERS

Nanoscale-reinforced polymeric composites, or nanocomposites, have been shown to
offer tremendous improvements in mechanical and physical properties at very low loading
levels for a number of polymeric resins [1-3]. Such low loadings enable conventional
polymer processes such as injection molding and potential matrix modifications for fiber-
reinforced composites. These attributes can provide affordable performance and/or improved
tailorability for many aerospace applications.

It is well established that a number of key parameters dictate the effect of particles on
final composite properties, including volume fraction, shape, size/surface area, dispersion,
orientation, adhesion or interface, packing, chemical composition, and respective moduli of
the filler and polymer. The relationship between the effects of these variables and some
properties (e.g., fracture toughness) is often difficult to predict as final behavior may involve
a number of either cooperative or competing mechanisms and become quite complex. In
general the inclusion of microscale rigid particles into brittle resins tends to lead to increased
modulus and toughness and decreased fracture tensile stress and strain [4].

The interfacial surface treatment has also been shown to influence properties,
especially the crack initiation energy [5]. The effect of size (and shape) is not well
understood, though it has been demonstrated that particle size will affect certain properties
[6-7]. Possible explanations of the size effect include: the high specific surface area and
increased role of interface and increased surface energy, the relationship between flaws and

volume, and the effects of fillers on the cure of the polymer.



2. SPHERICAL SILICATES

This size relationship for spherical particles is pictured in Figure 1. While the relative
distances are dependent on the volume fraction, the absolute distances (at a given volume
fraction) are dependent on the particle size. The pictured 20-nm particles were the most
commonly used silica particles in this section; they give an interparticle distance of only 44
nm which is on the order of the molecular chain dimensions of the epoxy polymer. The face-
centered cubic arrangement produces the maximum separation of the particles (along with
hexagonal-close packing); therefore other packing arrangements of separated particles

produce even closer interparticle separations.

89.6 nm

Figure 1. Distances for Spherical Silica Particles (20 nm diameter) in Epoxy at 5%
by Weight (2.4% by Volume) in a Face-Centered-Cubic Arrangement.

Research has shown unexpected property improvements for nanoscale composites.
Going from the micro- to the nanoscale introduces some unique aspects: at the nanoscale,

specific surface area is very high (20 nm particles have 250 times the surface area-to-volume



ratio of 5 wm particles), resulting in an increased effect of interface at low filler volumes,
and filler size is approaching the scale of the polymer chain. Typical filler trends may or
may not hold at these scales [8]. Nanocomposites offer another means for tailoring at the

morphological level, which can have a great impact on fracture behavior.

2.1  Experimental

The resin examined in this study was Shell Epon 862 (a bis-phenol F epoxy) and Epi-
Cure curing agent W (Cure W, an aromatic amine), a typical aerospace resin that can be resin
transfer molded if desired. Silicate particles were obtained from commercial sources as fumed
powders (US Silica Min-U-Sil 5: a 5 wm particle and Nanophase NanoTek silicon dioxide: 33
nm particle) or colloidal suspensions (Alfa Aesar: 4 nm particles 15 percent in water and 20 nm
particles 40 percent in water). Tetraethyl orthosilicate (TEOS), a silica former, was obtained
from Aldrich, as were the Dow Corning coupling agents: Z-6020, N[3-(trimethoxysilyl) propyl]-
ethylene diamine (coupling agent A), and Z-6040, 3-glycidoxypropyl trimethoxy silane

(coupling agent B). The chemical structures of the silanes are given here:

Coupling agent A (Z-6020):

CH;3 H
HgCO_Si_CHZCH2CH2_ll]_CHZCHg_NHg
CH;
Coupling agent B (Z-6040):
OCH,4
HgCO—éi—CHZCHZCHZ—O—CHZ—CH—CHZ
(l)CHg o



Tetraethyl orthosilicate or tetraethoxysilane (TEOS):

OCH,CHj3
H3CCH,0—Si—OCH,CH3
CH,CH;4
The general chemical reaction of the silanes with water or the hydroxyl groups of the

silicate particles to form additional silicate and alcohol is given here:

i
4 H,0
SifOCHZ(:Hg}4 —— =050~ + 4 HOCH,CH,

{

Table 1 lists the nanocomposite panels which were made and tested. Silicate particles
were introduced into the resin system in one of several ways. Colloidal water suspensions
were mixed with either the epoxy resin or the amine curing agent. Fumed particles were
suspended in isopropyl alcohol and then mixed with the epoxy resin. Particles were also
formed in situ with TEOS or the silane coupling agents mixed with the epoxy and a small
amount of water.

The comments in Table 1 explain some of the mixing procedures. The first two
samples are listed as “Control” and “Epon 826WW”. Both of these samples contain just the
resin with no particles when cured; the latter had water added during the heating and mixing
phase which was subsequently removed by pulling a vacuum on the resin to simulate the
effects of water removal when the suspension is added. The sample numbers at the
beginning of the table (mixing method “S”) start with either a 20N or 00X. 20N refers to
using the 20-nm suspended particles; the 00X means no particles were added. The next letter
of C or U indicates that coupling agent was added or it was left uncoupled. The next number,

either 00 or 05, indicates the weight percent of addition of the particles. Finally, the last two
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letters indicate a trial number. Several of the 00XCO001 1 are trials of forming the particles in
situ from silanes as indicated in the comments.

These designations are redundant to some of the columns in the table but those
columns are needed to convey that information for the latter half samples. When the
ultrasonic mixing was initiated, a new sample numbering system began. The particles and
their level are indicated in the columns and comments. The last sample in the table is a new
control where ultrasonic mixing was used.

The particle suspension and resin mixtures (either epoxy or amine component) were
mechanically stirred while heating to 50 to 60°C. In some cases ultrasonic mixing was
included to help disperse the particles as indicated in Table 1. For fumed particles the dry
powders were mixed with isopropanol and then the epoxy at 50 to 60°C. The silanes were
added to the epoxy mixture, usually mixed with isopropanol. A few drops of water were
added to complete the reaction as given above. In all cases the water and/or alcohol were
removed by vacuum at temperature. The final component was then added, either the curing
agent to the epoxy mixtures or the epoxy to the curing agent mixture. The amine functional
silane “A,” used initially, tended to cure in the epoxy before the Cure W was added until the
order was changed; so that the dispersion was carried out in the Cure W, and then the epoxy
was added after the water and/or alcohol was removed. The epoxy was mixed with the
curing agent in the proportion of 397 g of Epon 862 to 103 g of Cure W, the values adjusted
to account for the amine or glycidyl groups in the added coupling agent. The resulting
systems of resin, curing agent and particles were then cast between glass plates spaced 6.3
mm apart and cured.

The curing consisted of heating up the casting in an oven to 121°C over 30 minutes,

holding at temperature for two hours, then heating to 177°C over 30 minutes and holding for



an additional two hours. The plaque was allowed to cool in the oven to ambient. The
resulting cured plaque was approximately 25 cm by 25 cm and 6.3 mm thick.

The glass transition temperature was based on the G" peak of the dynamic mechanical
analysis obtained using a Rheometrics Dynamic Spectrometer II at a frequency of 100
rad/sec, a strain of one percent, and a heating rate of 2°C/min. Resin strength, modulus, and
strain-to- failure were measured under ambient conditions using a three-point flexure test
configuration on an Instron load frame with a crosshead travel of 0.13 cm/min. The samples
were tested using a 7.6-cm span (approximate 12:1 span-to-depth ratio) and were 1.3 cm
wide. Ten specimens were tested for each resin formulation. Fracture toughness, Kq, was
measured using the standard compact tension specimen described in the ASTM standard
E399. The specimen notch was machined with a diamond wafering blade, and the starter
crack was initiated by scoring with a razor blade. Ten specimens were tested for each resin
formulation. Table 2 shows the results of the mechanical testing.

Scanning electron microscopy was conducted on some of the compact tension
fracture surfaces using a Leica 360 field emission gun scanning electron microscope

operating at 15 kV. Secondary and backscatter images were obtained.

2.2 Results and Discussion

The three control samples which contained only resin in the cured plaque showed
some variation in their final average fracture toughnesses. There was some improvement in
the fracture toughness of the neat resin as a result of the ultrasonic mixing, particularly at the
lower levels, but the range of variations in the values was too large to say if there were any

significant differences. These values are shown in Figure 2.
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1000

Fracture Toughness (psi-ir?‘s)
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Resin alone  Resin w/ water Ultrasonically
mixed resin

Figure 2.  Fracture Toughness Values for the Resin Control Plaques. The diagonals
indicate the range of values, converging on the average value.

One interesting result of the mechanical testing was that the variations in results from
replicate testing was reduced dramatically when particles were added to the plaques.

The most difficult problem associated with the addition of silica particles to the epoxy
resin was the tendency for the particles to fall out of suspension (flocculate). Vigorous
mechanical stirring had only a limited ability to disperse the particles in the resin whether the
particles were added to the epoxy or the amine component. Heating the reaction flask in an
ultrasonic bath resulted in considerably better dispersion than mechanical stirring alone.
Higher fracture toughness values were associated with the better dispersion (Figure 3).

The effect of particle size was examined through the use of microscale and nanoscale
particles. The suspended 20-nm particles did not produce the fracture toughness
improvements expected (Figure 4). This may be a result of poor dispersion of the particles, a

function of the fact that the particles start out in suspension, but the original suspension

10






media has to be removed while the particles become suspended in the epoxy resin.
Agglomeration of particles was observed in the SEM, with the largest groups resulting when
the suspended nanoparticles were used. SEMs of the fumed silica plaque were unavailable,
but the agglomeration in the 20- nm suspended particles is seen in Figure 5. The silica
domains are hundreds of microns across containing millions of particles. Figure 6 shows a
higher magnification of the silica domains where the many nanoscale particles are just
visible. Clearly, this agglomeration negates any beneficial effects of the small size of the
nanoparticles.

The 5-um particles produce a small improvement in fracture toughness roughly
equivalent to the 20-nm suspended particles which agglomerated. The fumed nanoparticles
produce almost twice the fracture toughness of the resin alone (see Figure 4). Flocculation
was not observed in the fumed nanosilica, also indicating there was less agglomeration. The
fumed nanosilica, on the other hand, start out as dry powders which are suspended in
isopropanol which is more easily suspended in the epoxy resin before the alcohol is removed.

Silica weight fractions were varied in the range of 1-5 percent, but increased
flocculation was observed at higher silica fractions. Fracture toughness improvements were
not as high as expected at higher fractions. Since fracture toughness is very sensitive to
morphology, morphological control is very important. Flocculation may be only one culprit,
though, as it was observed early that fracture toughness is sensitive to the amount of the
silane coupling agent (Figure 7). The effects of silanes as a source of in situ particle formers
were also observed in this experiment. Figure 7 shows an increase in fracture toughness
values as small amounts of silane are added but then a decrease in the fracture toughness

values as the amount of silica formers increases.

12



Figure 5. Agglomerated Silica Particles Precipitated from the Suspended 20-nm
System Shown in an SEM.

Figure 6. Close-up SEM of the Silica Domains of Figure 5 Showing the Numerous
Nanoparticles.

13
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Figure 7. The Addition Silica by In Situ Formation of Particles. The solid square is
the resin alone, the open diamonds are from silane A, the closed diamond
from silane B and TEOS, and the Xs are from silane B alone.

It does not appear that functionality of the organic component of the silane has any
appreciable effect on its behavior. The epoxy functional silane (B) fell along the same trend
as the amine functional silane (A).

A second issue with the silane observed is the decline in Tg (see Figure 8). The neat
resin and resin with particles shows a Tg of ~140°C. When the amount of silane added rises
above 0.8 percent, there is an additional Tg near 71°C. The lower Tg is probably a result of
the epoxy polymer chain having links of the more flexible aliphatic groups on the silanes. It
is also noted that the fracture toughness improvement with low levels of silane alone is
equivalent to the reported improvement for some of the particulate plaques having similar
levels of silane coupling agents. The silane alone may be adding the toughness as opposed to

the particles.
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Figure 8. Glass Transition Temperature for the Nanocomposite Plaques Tested.

The flexural strengths and moduli did not change much in most of the plaques. This
can be seen in Figure 9. The two low strength points also correspond to samples with low

Tg.
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Figure 9. Flexural Properties for all the Plaques Tested.

2.3.  Conclusions for Spherical Particles
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Nanoscale-filled polymers can produce a significant improvement in an aerospace
resin fracture toughness at low volume fractions. However, as fracture toughness is very
sensitive to morphology, processing and effective dispersion of these systems is critical. The
addition of silane coupling agents to the mixture to improve the interface between silicate
particles and resin showed some improvements, but we cannot at this time separate the

effects of the silane forming silicate particles from its interface effects.
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3. LAYERED SILICATES

Layered nanosilicates are generally produced from natural clays. They have
additional property enhancement potentials and processing problems over spherical silicates.
The potential as gas barriers is one possible advantage. The additional processing difficulties
include the problem of opening up the clay layers (exfoliation) and aligning the layers.

The work to date has been restricted to measuring the mechanical properties of
composite resin plaques produced by a Government engineer. The testing techniques were
identical to those described for spherical nanoparticle composites. Details of the composition
and mixing were not available, but the basic resin was the same as in the spherical
nanoparticle work.

Table 3 gives the mechanical testing results for the layered silicate plaques tested.

The fracture toughness of the samples did not appear to be affected by the presence of the
layered silicates other than the reduction in variability of results (see Figure 10). The flexural
strength and modulus were affected (see Figure 11). The modulus was equal to or greater
than the control and sometimes more than double that of the neat resin. The strength was
sometimes lower than the control but in the higher-modulus samples were about twice the

strength of the resin alone.
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Figure 10. Layered Silicate Fracture Toughness Data.
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Figure 11. Layered Silicate Flexure Testing Data.
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4. PUBLICATIONS

The following publication was generated during this reporting period:

Anderson, D. P., & T. Benson Tolle. (2000). Composite Property Enhancement with
Nanoscale Inorganic Fillers. PMSE Preprints 82.
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